

IPC Mitteldruck-Innenzahnradpumpen Technisches Datenblatt

Durch die Drehung der Zahnräder in der Pumpe wird die Druckflüssigkeit (in der Regel Hydrauliköl) in das Gehäuse und damit in den Raum zwischen Ritzel und Hohlrad gesaugt. Die optimierten Querschnitte auf Saug- und Druckseite erlauben den Betrieb über einen weiten Drehzahlbereich.

In radialer Richtung werden die Zahnkammern durch den Zahneingriff bzw. das Füllstück verschlossen. In axialer Richtung dichten die Axialscheiben den Druckraum nahezu spaltfrei ab. Diese Konstruktion minimiert die volumetrischen Verluste und erhöht den Wirkungsgrad.

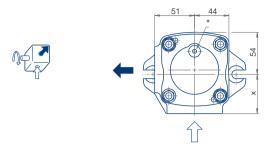
Technische Daten

Bauart	Innenzahnradpumpe mit radialer und axialer Dichtspaltkompensation
Тур	IPC
Befestigungsarten	SAE-Lochflansch; ISO 3019/1 oder VDMA-Lochflansch; ISO 3019/2
Leitungsbefestigung	SAE-Saug- und -Druckflansch J 518 C Code 61
Drehrichtung	rechts- oder linksdrehend
Einbaulage	beliebig
Wellenbelastung	radiale und axiale Belastung der Antriebswelle nur nach Rücksprache mit Voith Turbo H + L Hydraulic
Eingangsdruck	0,8 3 bar Absolutdruck (bei Start kurzzeitig 0,6 bar)
Druckflüssigkeit	HLP Mineralöle nach DIN 51524, Teil 2 oder 3
Viskositätsbereich der Druckflüssigkeit	10 300 mm ² s ⁻¹ (cSt)
Zulässige Startviskosität	max. 2000 mm ² s ⁻¹ (cSt)
Zulässige Temperatur der Druckflüssigkeit	-10 +80 °C
Erforderliche Reinheit der Druckflüssigkeit	Klasse 20/18/15 (ISO 4406), Klasse 8 (NAS 1638)
Filterung	Filtrationsquotient min. $\beta_{20} \ge 75$, empfohlen $\beta_{10} \ge 100$ (höhere Lebensdauer)
Zulässige Umgebungstemperatur	-10 +60 °C

Berechnungen

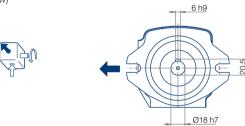
Förderstrom	$Q = V_{gth} \cdot n \cdot \eta_{v} \cdot 10^{-3} [I/min]$
Leistung	$P = \frac{Q \cdot \Delta p}{600 \cdot \eta_g} [kW]$
$V_{g th}$	Fördervolumen pro Umdrehung [cm³]
n	Drehzahl [min-1]
$\eta_{\rm v}$	Volumetrischer Wirkungsgrad
η_{g}	Gesamtwirkungsgrad
Δρ	Differenzdruck [bar]

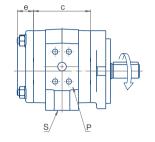
		Drehz	zahl				
	Fördervolumen pro Umdrehung	min.	max.	Förderstrom bei 1500 min ⁻¹	Dauerdruck	Spitzendruck bei 1 500 min ⁻¹	Trägheits- moment
	[cm³]	[min ⁻¹]	[min ⁻¹]	[l/min]	[bar]	[bar]	[kg cm ²]
IPC 3 – 3.5	3,6	400	3 600	5,4	210	250	0,34
IPC 3 – 5	5,2	400	3 600	7,8	210	250	0,42
IPC 3 – 6.3	6,4	400	3 600	9,6	210	250	0,49
IPC 3 – 8	8,2	400	3600	12,3	210	250	0,58
IPC 3 – 10	10,2	400	3 600	15,3	210	250	0,70
IPC 4 – 13	13,3	400	3600	19,9	210	250	2,25
IPC 4 – 16	15,8	400	3 400	23,7	210	250	2,64
IPC 4 – 20	20,7	400	3200	31,0	210	250	3,29
IPC 4 – 25	25,4	400	3 000	38,1	210	250	3,70
IPC 4 – 32	32,6	400	2800	48,9	210	250	4,44
IPC 5 – 40	41,0	400	2800	61,5	210	250	10,20
IPC 5 – 50	50,3	400	2600	75,4	210	250	11,60
IPC 5 – 64	64,9	400	2600	97,3	210	250	14,40
IPC 6 – 80	80,7	400	2400	121,0	210	250	30,90
IPC 6 – 100	101,3	400	2200	151,9	210	250	36,10
IPC 6 – 125	126,2	400	2200	189,3	210	250	43,70
IPC 7 – 160	160,8	400	2000	241,2	210	250	102,60
IPC 7 – 200	202,7	400	1 800	304,0	210	250	119,00
IPC 7 – 250	251,7	400	1 800	377,5	210	250	144,50

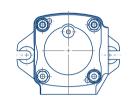

Die angegebenen Werte gelten für:

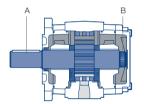

- Die Förderung von Mineralölen mit einer Viskosität von 20 \dots 40 mm² s $^{\text{-1}}$
- Einen Eingangsdruck von 0,8...3,0 bar Absolutdruck

Hinweise:


- Spitzendrücke gelten für 15 % Einschaltdauer und einer maximalen Taktzeit von 1 Minute
- Spitzendrücke bei abweichenden Drehzahlen bitte anfragen
- Das Fördervolumen kann aufgrund von Fertigungstoleranzen um ca. 1,5 % geringer sein

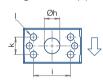

Drehrichtung rechts (cw)





Drehrichtung links (ccw)





Zulässige Antriebsmomente:

Antriebswelle A: 160 Nm Sekundärwelle B: 80 Nm

Тур/						N	Иаßе					Gewicht	SAE-Fla	ansch-Nr.
Fördergröße	С	x	е	g	h	i	k	I	r	V	w			П
	[mm]	Gewinde	[mm]	[mm]	Gewinde	[kg]								
IPC 3 – 3.5	66	47,2	20,5	9	15	38,1	17,5	M8x13	38,1	17,5	M8x15	3,4	10	10
IPC 3 – 5	70	47,2	20,5	11	15	38,1	17,5	M8x13	38,1	17,5	M8x15	3,6	10	10
IPC 3 – 6.3	73	50,2	20,5	11	20	47,6	22,3	M10 x 15	38,1	17,5	M8x15	3,8	10	11
IPC 3 – 8	77,5	50,2	20,5	13	25	52,4	26,2	M10 x 15	38,1	17,5	M8x15	4,0	10	12
IPC 3 – 10	82,5	51,5	20,5	13	25	52,4	26,2	M10x15	38,1	17,5	M8x15	4,2	10	12

Öffnung beim Pumpbetrieb verschließen; Verschlussschraube M10 x1, Innensechskant SW5, Anzugsdrehmoment 10 Nm. Vor Inbetriebnahme kann hier je nach Lage der Pumpe befüllt oder entlüftet werden.

IPC 3, Ausführungen und Maße

Drehrichtung, Sauganschluss Befestigungsflansch Wellenende Standard Drehrichtung rechts, SAE-2-Loch-Flansch Passfederverbindung Sauganschluss Pumpe 0 1 Varianten Drehrichtung links, SAE-2-Loch-Flansch Passfederverbindung Sauganschluss Pumpe 0 1 Drehrichtung rechts*, SAE-2-Loch-Flansch Evolventenkeilverzahnung Sauganschluss Pumpe 1 0 0 ANSI B92.1a 11T Drehrichtung links*, 16/32 DP 30° Sauganschluss Pumpe Passfederverbindung VDMA-2-Loch-Flansch 109 4 1 ø 16 h7 19,5 132

^{*} Drehrichtung frei wählbar in den dargestellten Befestigungsflansch-/Wellenenden-Kombinationen.

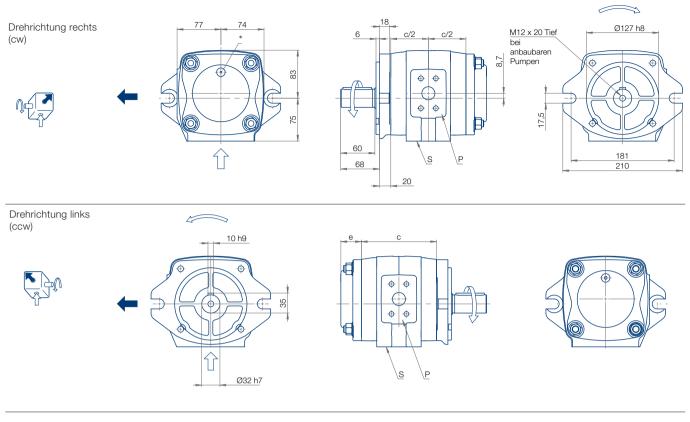
Drehrichtung rechts (cw) M8 x 19 tief bei anbaubaren Pumpen Ø101,6 h8 0 фффф-48 146 56 Drehrichtung links (ccw) Ø8 h9 фф ф-Ø25 h7

			Antrieb	i ge Antrie Iswelle A Järwelle B	: 335 Nm				1	(†) (†) (†) (†) (†) (†) (†) (†) (†) (†)	w	¥	Øh	Ţ
Тур/							Maß	Be				Gewicht	SAE-Fla	ansch-Nr.
Fördergröße	С	X	е	g	h	i	k	I	r	V	W		•	Ţ

Druckanschluss (P)

Sauganschluss (S)

2111														
Fördergröße	С	х	е	g	h	i	k	I	r	V	w			П
	[mm]	Gewinde	[mm]	[mm]	Gewinde	[kg]								
IPC 4 – 13	88,5	57,2	31	14	25	52,4	26,2	M10x15	38,1	17,5	M8 x 13	7,8	10	12
IPC 4 – 16	92,5	57,2	31	18	30	58,7	30,2	M10x15	47,6	22,3	M10x15	8,1	11	13
IPC 4 – 20	98	57,2	31	18	30	58,7	30,2	M10×15	47,6	22,3	M10x15	8,4	11	13
IPC 4 – 25	104	63,2	31	18	40	69,9	35,7	M12x20	47,6	22,3	M10x15	8,6	11	30
IPC 4 – 32	113	63,2	31	18	40	69,9	35,7	M12x20	47,6	22,3	M10×15	9,2	11	30


^{*} Öffnung beim Pumpbetrieb verschließen; Verschlussschraube M10x1, Innensechskant SW5, Anzugsdrehmoment 10 Nm. Vor Inbetriebnahme kann hier je nach Lage der Pumpe befüllt oder entlüftet werden.

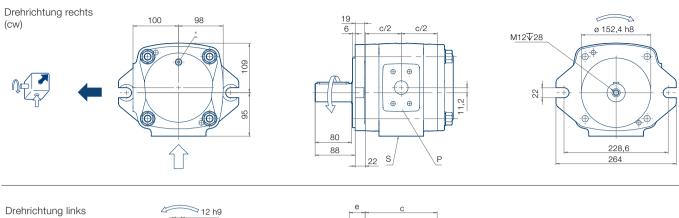
IPC 4, Ausführungen und Maße

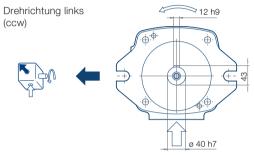
Drehrichtung, Sauganschluss	Befestigungsflansch	Wellenende
Standard		
Drehrichtung rechts, Sauganschluss Pumpe	SAE-2-Loch-Flansch 7	Passfederverbindung 1
Varianten	OAE O Look Floresh	Destruction
Drehrichtung links, Sauganschluss Pumpe	SAE-2-Loch-Flansch	Passfederverbindung
6	7	1
Drehrichtung rechts*, Sauganschluss Pumpe	SAE-2-Loch-Flansch	Evolventenkeilverzahnung
Drehrichtung links*, Sauganschluss Pumpe	7	ANSI B92.1a 15T 16/32 DP 30°
6	SAE-4-Loch-Flansch	Passfederverbindung
	90 13,5 1 10 10 10 10 10 10 10 10 10 10 10 10 1	48
	VDMA-4-Loch-Flansch	Passfederverbindung
	12 9 12 9 124 0 125	52,5

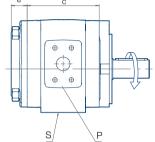
^{*} Drehrichtung frei wählbar in den dargestellten Befestigungsflansch-/Wellenenden-Kombinationen.

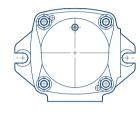
IPC 5, Drehrichtung und Maße (Befestigungsflansch 0, Wellenende 1)

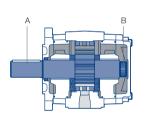
Typ/						Maße					Gewicht	SAE-Fla	ansch-Nr.
Fördergröße	С	е	g	h	i	k	I	r	V	w			Ţ
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Gewinde	[mm]	[mm]	Gewinde	[kg]		
IPC 5 – 40	125	36	19	40	69,9	35,7	M12x20	52,4	26,2	M10x15	13,4	12	30
IPC 5 – 50	132	36	23	45	77,8	42,9	M12x20	52,4	26,2	M10x15	14,1	12	15
IPC 5 – 64	143	36	23	45	77,8	42,9	M12x20	52,4	26,2	M10x15	14,8	12	15

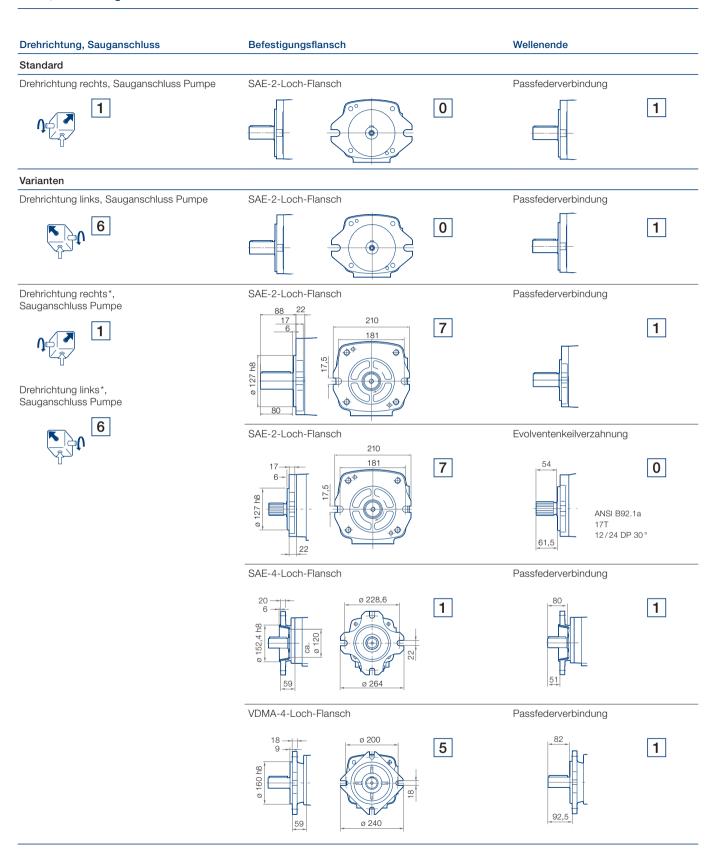

^{*} Öffnung beim Pumpbetrieb verschließen; Verschlussschraube M10x1, Innensechskant SW5, Anzugsdrehmoment 10 Nm. Vor Inbetriebnahme kann hier je nach Lage der Pumpe befüllt oder entlüftet werden.


Hinweis! Bei Unteröleinbau der Pumpe kann der Flansch Variante 0 nicht verwendet werden. Für diesen Sonderfall wird der Flansch Variante 7 verwendet.

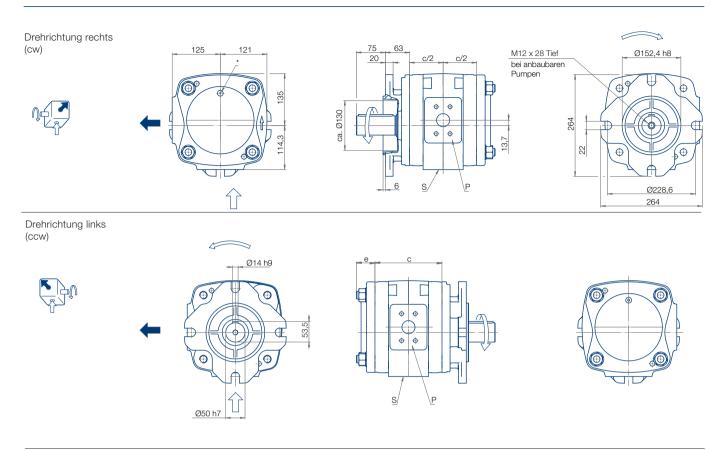

Befestigungsflansch Wellenende Drehrichtung, Sauganschluss Standard Drehrichtung rechts, Sauganschluss Pumpe SAE-2-Loch-Flansch Passfederverbindung 0 1 Varianten Drehrichtung links, Sauganschluss Pumpe SAE-2-Loch-Flansch Passfederverbindung 1 0 SAE-2-Loch-Flansch Drehrichtung rechts*, Passfederverbindung Sauganschluss Pumpe 1 7 Drehrichtung links*, Sauganschluss Pumpe SAE-2-Loch-Flansch Evolventenkeilverzahnung 146 7 0 47.5 ANSI B92.1a 14T 12/24 DP 30° SAE-4-Loch-Flansch Passfederverbindung 1 1 ø 190 VDMA-4-Loch-Flansch Passfederverbindung 1 5 68,5 ø 190


^{*} Drehrichtung frei wählbar in den dargestellten Befestigungsflansch-/Wellenenden-Kombinationen.


IPC 6, Drehrichtung und Maße (Befestigungsflansch [0], Wellenende [1])



Zulässige Antriebsmomente: Antriebswelle A: 1 050 Nm Sekundärwelle B: 780 Nm Druckanschluss (P)

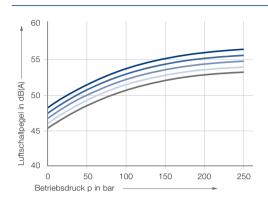


Тур/	Маве												ansch-Nr.
Fördergröße	С	е	g	h	i	k	1	r	V	w		_	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Gewinde	[mm]	[mm]	Gewinde	[kg]	1	<u> </u>
IPC 6 - 80	148	35	23	45	77,8	42,9	M12x20	69,9	36	M12x20	30,7	14	15
IPC 6 - 100	158	35	27	50	77,8	42,9	M12x20	69,9	36	M12x20	32,6	14	15
IPC 6 – 125	170	40	30	50	77,8	42,9	M12x20	69,9	36	M12x20	35,0	14	15

Öffnung beim Pumpbetrieb verschließen; Verschlussschraube M10x1, Innensechskant SW5, Anzugsdrehmoment 10 Nm. Vor Inbetriebnahme kann hier je nach Lage der Pumpe befüllt oder entlüftet werden.

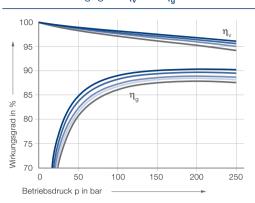
^{*} Drehrichtung frei wählbar in den dargestellten Befestigungsflansch-/Wellenenden-Kombinationen.

Typ/			Gewicht	SAE-Fla	ansch-Nr.								
Fördergröße	С	е	g	h	i	k	1	r	v	w			П
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Gewinde	[mm]	[mm]	Gewinde	[kg]		
IPC 7 – 160	162	48	30	56	88,9	50,8	M12x20	69,9	35,7	M12x20	50,0	14	16
IPC 7 – 200	174	46	34	62	88,9	50,8	M12x20	69,9	35,7	M12x20	54,0	14	16
IPC 7 – 250	188	42	38	72	106,3	61,9	M16x25	69,9	35,7	M12x20	59,0	14	17

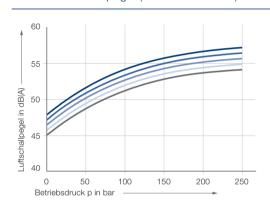

^{*} Öffnung beim Pumpbetrieb verschließen; Verschlussschraube M10x1, Innensechskant SW5, Anzugsdrehmoment 10 Nm. Vor Inbetriebnahme kann hier je nach Lage der Pumpe befüllt oder entlüftet werden.

IPC Baugröße 7, Ausführungen und Maße

Drehrichtung, Sauganschluss Befestigungsflansch Wellenende Standard Passfederverbindung Drehrichtung rechts, SAE-4-Loch-Flansch Sauganschluss Pumpe 1 1 Varianten Drehrichtung links, SAE-4-Loch-Flansch Passfederverbindung Sauganschluss Pumpe 1 1 Drehrichtung rechts*, SAE-4-Loch-Flansch Evolventenkeilverzahnung Sauganschluss Pumpe 1 0 ANSI B92.1a Drehrichtung links*, 15T Sauganschluss Pumpe 8/16 DP 30° VDMA-4-Loch-Flansch Passfederverbindung ø 250 110 5 1 200 h8 120,5 ø 290

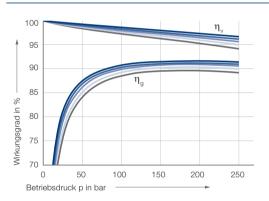

^{*} Drehrichtung frei wählbar in den dargestellten Befestigungsflansch-/Wellenenden-Kombinationen.

IPC 3 - Luftschallpegel (Messort 1 m axial)

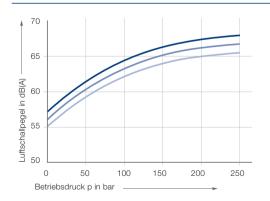


Kennlinien:— IPC 3 – 10 — IPC 3 – 8 — IPC 3 – 6.3 — IPC 3 – 5 — IPC 3 – 3.5

IPC 3 – Wirkungsgrad η_v und η_a

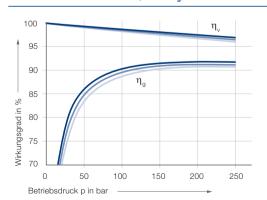


IPC 4 - Luftschallpegel (Messort 1 m axial)

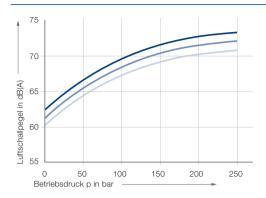


 Kennlinien:
 —
 IPC 4 − 25
 —
 IPC 4 − 20
 —
 IPC 4 − 16
 —
 IPC 4 − 13

IPC 4 – Wirkungsgrad η_v und η_g

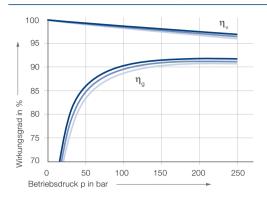


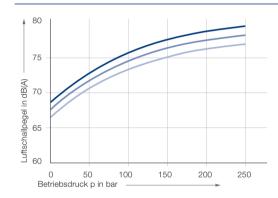
IPC 5 - Luftschallpegel (Messort 1 m axial)



Kennlinien:— IPC 5 – 64 — IPC 5 – 50 — IPC 5 – 40

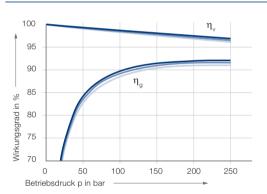
IPC 5 – Wirkungsgrad η_v und η_g

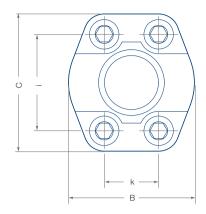

IPC 6 - Luftschallpegel (Messort 1 m axial)

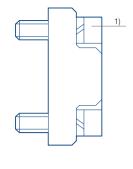

Kennlinien:

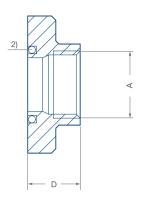
IPC 6 – Wirkungsgrad η_v und η_a

IPC 7 – Luftschallpegel (Messort 1 m axial)

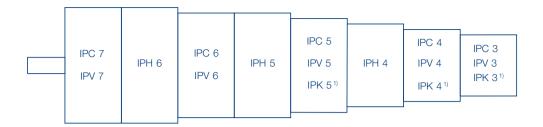

Kennlinien:


Messbedingungen:


Drehzahl: 1500 min $^{\text{1}}$ / Viskosität der Druckflüssigkeit: 46 mm $^2\text{s}^{\text{1}}$ / Betriebstemperatur: 40 °C **Hinweis:**


Messung erfolgte in einem schallarmen Raum. In einem schalltoten Raum liegen die Messwerte um ca. 5 dB(A) niedriger.

IPC 7 – Wirkungsgrad $\eta_{_{\boldsymbol{v}}}$ und $\eta_{_{\boldsymbol{q}}}$



SAE-Flansch-Nr.	A	В	С	D	E ¹⁾	i	k	S ²⁾	max. Druck
	Gewinde	[mm]	[mm]	[mm]	Dichtring	[mm]	[mm]	Gewinde	[bar]
10	G ½	46	54	36	18,66 – 3,53	38,1	17,5	M 8	345
11	G ¾	50	65	36	24,99 – 3,53	47,6	22,3	M 10	345
12	G 1	55	70	38	32,92 – 3,53	52,4	26,2	M 10	345
13	G 1-1/4	68	79	41	37,69 – 3,53	58,7	30,2	M 10	276
14 ³⁾	G 1-½	82	98	50	47,22 – 3,53	69,9	35,7	M 12	3453)
30	G 1-½	78	93	45	47,22 – 3,53	69,9	35,7	M 12	207
15	G 2	90	102	45	56,74 – 3,53	77,8	42,9	M 12	207
16	G 2-1/2	105	114	50	69,44 – 3,53	88,9	50,8	M 12	172
17	G 3	124	134	50	85,32 – 3,53	106,4	61,9	M 16	138
18	G 4	146	162	48	110,72 – 3,53	130,2	77,8	M 16	34

Schraubenanzugsmomente nach ISO 6162

 ¹⁾ Zylinderschraube EN ISO 4762
 ²⁾ Runddichtring (O-Ring) ISO-R 1629 NBR
 ³⁾ Sonderausführung, abweichend von SAE J 518 C Code 61

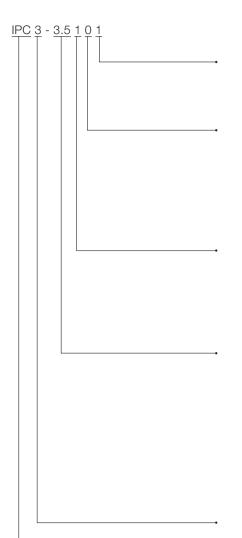
¹⁾ Im Anschluss an eine IPK ist der Anbau einer weiteren Pumpe der Baureihen IPV, IPC, IPH nicht möglich.

Kombinationen IPC-Pumpen

- IPC Pumpen gleicher oder verschiedener Baugrößen können zu Mehrstrompumpen kombiniert werden.
- Alle Baugrößen mit dem jeweiligen Fördervolumen sind als Zwei oder Dreistrompumpen lieferbar; Vierstrompumpen müssen von Voith Turbo H + L Hydraulic ausgelegt werden.
- Die Anordnung erfolgt nach Baugröße und Fördergröße ansteigend.

Auswahl

- 1. Druckbereiche bestimmen und dazu die Pumpenbaureihe(n) festlegen.
- 2. Fördervolumen bestimmen und dazu die Baugröße(n) auswählen.
- 3. Reihenfolge der Pumpen festlegen.
- 4. Drehmomentüberprüfung.
- 5. Drehrichtung und Ansaugung bestimmen.
- 6. Befestigungsflansch und Wellenende festlegen.


Kombination IPC/IP ... - Pumpen

- Die Kombination von IPC Pumpen mit anderen Voith Turbo H + L Hydraulic Pumpenbaureihen (z.B. Mitteldruckpumpen oder Niederdruckpumpen) ist möglich.
- Die Anordnung der Pumpen erfolgt nach Typen und Baugrößen wie im Bild oben dargestellt.
- Bei aufeinander folgendem gleichen Typ oder gleicher Baugröße wird die Pumpe mit größerem Förderstrom näher am Antrieb plaziert.

Anbau, Zusammenbau

- Mehrstrompumpen werden in der Regel über einen Flansch am Antrieb befestigt. Alle Informationen zu den Flanschausführungen und zu den Wellenenden finden Sie im jeweiligen technischen Datenblatt der Pumpenbaureihe.
- Weitere Hinweise hierzu, wie zum Beispiel über die Bestimmung der Zwischengehäuse, im Prospekt Nr. G 1714 (Voith Mehrstrompumpen).

Drehrichtung und Ansaugung Befestigungsflansch Wellenende rechts links counterclockwise (ccw) clockwise (cw) 2 7 0 1 1 0 1 6 5 4 2 7 7 Ausführungen und Maße siehe technisches Datenblatt der jeweiligen Pumpenbaureihe. 1 6 SAE-2-Loch-Flansch 3 8 SAE-4-Loch-Flansch 3 8 VDMA-2-Loch-Flansch 5 VDMA-4-Loch-Flansch 4 9 SAE-2-Loch-Flansch (Variante) Sonderausführung Sonderausführung

Wellenende

- 0 Zahnwelle ANSI B92.1a
- 1 Passfeder

Befestigungsflansch

- 0 SAE-2-Loch
- 1 SAE-4-Loch
- 4 VDMA-2-Loch
- 5 VDMA-4-Loch
- 7 SAE-2-Loch, Variante

Drehrichtung, Sauganschluss

- 1 Rechtslauf, Sauganschluss Pumpe
- 6 Linkslauf, Sauganschluss Pumpe
- 4 Rechtslauf, Sonderpumpe
- 9 Linkslauf, Sonderpumpe

Fördergrößen

Baugröße	verfügbare Fördergrößen												
3	3.5	5	6.3	8	10								
4	13	16	20	25	32								
5	40	50	64										
6	80	100	125										
7	160	200	250										

Baugröße

Typ der Innenzahnradpumpe

Original-Sprache: deutsch.

Rechtlich bindende Sprachversion: deutsch.

Voith Turbo H+L Hydraulic GmbH & Co. KG Schuckertstraße 15 71277 Rutesheim, Germany Tel. +49 7152 992 3 Fax+49 7152 992 400 sales-rut@voith.com www.voith.de/hydraulik-systeme

